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ABSTRACT
pe3?

The basic principles and specific techniques of
temperature contral employed on the Mariner R spacecraft
are presented. A chronological history of the thermal
aspects of the Mariner 2 flight is given,including telem-
etry data for monitored components. The significance of
the data in terms of improving temperature-control tech-

niques is discussed. L urHoR

I.  INTRODUCTION

Ultimately, the temperature control of a spacecraft involves a thermal radiation balance of absorbed
solar energy and radiant energy lost to the heat sink of space. Solar input and radiated energy will vary from
surface to surface because of differences in shape and in optical properties. Moreover, a portion of the
incident solar energy will be converted to electrical energy and dissipated in various spacecraft assemblies
as a function of the operating mode. These factors, along with rather complex internal heat-transfer

parameters, determine the spacecraft temperature distribution.

To achieve temperature control of the Mariner R, an effort was made to influence the design of the
spacecraft in such a manner that each component would remain at an acceptable temperature throughout the
mission. This function was so intimately associated with the details of internal and external spacecraft
design that a list of the components of the temperature-control ‘“system’ must implicitly include a con-
sideration of temperature effects on spacecraft structure, materials, and assembly. Salient features of the

Mariner R temperature-control system include lonvers, radiation shields, paint patterns and surface finishes,

and thermal conduction insulators.
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(I. DESIGN PHILOSOPHY

The extreme difference in solar intensity at Earth and Venus — about 130 to 250 w/ft? — required
that temperature-sensitive components be isolated from solar inputs as far as possible (see Fig. 1). Large

variations in temperature (approximately 90°F) would have been experienced by a totally Sun-dependent

object.

Solar inputs to the basic hexagonal enclosure (hex) were minimized by shielding normally sunlit
surfaces, and the heat necessary for maintaining internal temperatures was supplied by the relatively con-
stant internal power dissipation. Since the potential heat loss from external radiating surfaces was much
larger than the internal electrical losses, exterior surfaces of poor radiating qualities (low emissivity) were
generally used. Paint patterns were applied as necessary to increase emissivity near regions of high power
dissipation. Internal surfaces were blackened to maximize internal transfer and to minimize assembly
temperature differences. An active device (louvers) was included to vary the effective emissivity of one box

face, thus further suppressing the temperature rise within the hex.

Temperature-sensitive components not enclosed within the basic hex were considered individually.

For the scientific instruments, solar energy inputs were necessary to maintain reasonably warm temperatures
near Earth, which resulted in large Earth-to-Venus temperature rises. The design intent was to start near the
lower temperature limit at Earth to avoid excessively high encounter temperatures. The solar panels were
designed to operate at the lowest possible temperature by maximizing the emissivity of the front and back
surfaces and by minimi zing the temperature drop across the panel. Prior to Earth acquisition, the Earth
sensor was maintained at a safe temperature by an internal heater. The changing antenna hinge angle during
flight had the undesirable effect of changing the solar input to the Earth sensor, but it was felt that by

starting cold near Earth a fairly large temperature rise could be tolerated by this instrument.

All external cabling and structure were treated to produce both a low solar absorptivity and a low
infrared emissivity. The low emissivity provided for the distribution of heat along the structure by conduc-
tion, thus leading to a more nearly isothermal condition. The low absorptivity prevented an excessive

spacecraft solar dependency by means of absorbing solar energy that could have been conducted into the

generally cooler hex.
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Fig. 1. Mariner R configuration showing temperature-control components:

(a) Radiometer side
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Fig. 1. Mariner R configuration showing temperature-control components:

(b) Long-range Earth-sensor side
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The spacecraft was designed to present a highly reflective surface to the Sun during the normally
Sun-oriented portions of the flight. This design required that the sides of the spacecraft be of fairly high
solar absorptivity. During midcourse maneuver the solar input on the sunlit side of the spacecraft, combined
with the heat from the midcourse motor, could be expected to cause a substantial increase in spacecraft
temperatures, but the thermal capacity of the craft was large enough to limit the temperature rise during the

relatively short period of time involved.
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lli.  DESIGN DETAILS

The most important barrier to excessive solar inputs was the upper thermal shield, which consisted of
multiple layers of aluminized Mylar supported on a Fiberglas honeycomb panel. An aluminized Teflon sheet,
selected for its optical properties and its resistance to degradation by ultraviolet radiation, covered the upper
surface of the shield. The result was arigid, lightweight, and highly effective radiation shield. It was antic-

ipated that less than 2% of the solar irradiation would be transmitted through the shield to the hex interior.

A lower thermal shield was used to minimize heat losses from the bottom of the hex enclosure. The
multiple layers of aluminized Mylar were supported on a thin aluminum panel. High-temperature damage to
the Mylar resulting from the firing of the midcourse motor was prevented by facing the inner side with aluminum

foil. The heat loss through this shield was estimated to be about five watts.

The louvers on electronic assembly IV [Attitude Control and Central Computer and Sequencer (CC&S)]
fulfilled two design requirements. First, they maintained temperature-critical guidance electronic equipment
within much closer limits than would otherwise have been possible with the widely varying internal power
dissipation of the electronic assembly. Second, the louvers provided a variable heat valve, which compen-
sated for out-of-tolerance temperature conditions caused by unavoidable or unforeseen factors. The louver
assembly consisted of eight movable polished aluminum louvers, each individually actuated by a bimetallic
element. The louvers and actuators were mounted to the electronic assembly with a support frame. With a
rise in electronic assembly temperature, the bimetal elements rotated the louvers to a more open position,
increasing the effective emittance of the box face and increasing the radiant flux to space. The louvers
were designed to be completely closed at 60°F and fully open at 90°F, with a heat loss in these positions

of 3 and 38 w, respectively. The entire louver assembly weight was less than 2 1b.

In addition to the above hardware, the temperature-control design included the specification of

finishes for internal and external surfaces. Four general categories of treatment are given below:

1. Structure and bracketry external to the basic hex. Superstructure, hex support legs, and
intercostals were gold-plated if magnesium or polished if aluminum. These finishes are
poor emitters and poor absorbers of thermal radiation, and as such they contributed
little to the heat balance of the structure to which they were conductively coupled. This

treatment also caused the temperature of these members to respond more slowly
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(longer time constant) to the thermal perturbations that occurred during the Sun ac-
quisition and midcourse maneuver, when Sun attitude was not maintained. External
cabling was included in the category. All such cabling was wrapped in aluminized

Mylar, which made its thermal behavior similar to that described above.

Components entirely internal to the basic hex. Included in this group were the midcourse
propulsion system, the electronic subassemblies, the internal surfaces of the electronic
assembly, and interconnecting cables and connectors. These parts were all surfaced
with paints or conversion coatings that made them good thermal radiators. The resultant

high internal heat fluxes reduced temperature differences within the hex.

The six electronic assemblies. The electronic assemblies were treated in accordance

with the internal power dissipation of each. Assemblies with high internal power were

provided with a good radiating surface (ZW-60 white paint), whereas low internal power
assemblies were provided with polished aluminum shields to minimize the heat loss.

The effect of this treatment was to further reduce temperature differences within the hex.

Nonstructural components external to the basic hex. Science experiments, Sun sensors,
and the attitude-control nitrogen system are examples. For these items passive thermal-
control techniques were used, in that surface finishes were specified which balanced
internal power plus absorbed solar energy with thermal radiation and conduction losses

to achieve desired temperatures.
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IV. PREDICTED FLIGHT PERFORMANCE

The design of the Mariner R did not lend itself to comprehensive analytical temperature predictions.
The difficulties in generating a realistic mathematical model, coupled with uncertainties in surface properties
and electrical power distribution, would have resulted in unacceptably large temperature uncertainties. In
view of this lack of analytical confidence, a number of thermal tests were performed using a full-sized space-
craft in the most realistic simulation of the space environment available. This spacecraft, the Temperature
Control Model (TCM), was structurally identical to the flight model, but resistors were substituted for flight
electronics to simulate internal power dissipation. Tests were carried out in both the 6 by 7 ft vacuum
chamber and the 25-ft space simulator, but in neither of these chambers was adequate solar simulation
available. Accordingly, resistance heaters encased in thin rubber sheets were applied to sunlit surfaces to

simulate solar heating. The final thermal design was based on the results of these tests.
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V. FLIGHT PERFORMANCE

The prelaunch Atlantic Missile Range activity pertinent to temperature control of the Mariner R
involved final thermal preparation and the monitoring of spacecraft temperatures during the various electrical
tests and checks. Final thermal preparation consisted of insuring that all spacecraft surfaces conformed to
the temperature-control design. All surfaces were meticulously cleaned where possible, but repainting of
some assemblies was required. Spacecraft temperatures were monitored during the various electrical tests,
and checks were made to insure that no out-of-tolerance temperature conditions were experienced. A con-
tinuous log of spacecraft and environmental temperatures was maintained. In this way, a “normal thermal
condition’’ was established against which spacecraft temperatures were checked during countdown as an aid

in detecting any abnormal condition.

Prior to launch, Mariner 2 temperatures had stabilized at predicted levels, consistent with previous
countdowns and tests. The environment within the shroud was maintained at 70°F by means of the air-

conditioned shroud cooling blanket. Spacecraft temperatures at launch ranged from 70 to 109°F.

The immediate postlaunch environment of increased internal power, lack of Sun attitude, and aero-
dynamic heating forced spacecraft temperatures upward. Two hours after launch, temperatures were slowly
decreasing. By 8 hr after launch, temperatures had essentially stabilized with an average hex temperature of

84°F.

Temperatures remained essentially constant from this time until midcourse maneuver. At that time,
because of increased internal power, a significant heat input from the propulsion system, and a lack of Sun
orientation, the spacecraft hex experienced an average rise in temperature of 20°F. Within 10 br after mid-
course, temperatures had decayed to pre-midcourse maneuver values. The maximum and minimum temperatures
measured during the midcourse maneuver were 130 and 72°F as experienced by the midcourse nitrogen tank

and upper thermal shield, respectively.

After midcourse maneuver, Mariner 2 temperatures increased through encounter with exceptions as
given below. Two exceptions were the Earth sensor and the antenna yoke, which cooled to 85°F on October
27, 1962,1 then increased steadily in temperature. This behavior was a consequence of variable shading of

these parts as the antenna hinge angle changed.

Ipay 300.
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On October 31, 19622 a solar-panel malfunction followed by an ““‘off-science” condition resulted in a
temperature decrease of the entire hex of about 5°F. Particularly affected were the booster regulator, battery,
and science electronic assembly, which dropped 9, 5, and 8°F, respectively. The temperature drops were a
direct result of a decrease in power dissipation within the hex. Eight days later, the solar panel returned to
normal operation, and cruise science was reactivated. Within 8 hr, temperatures had regained the decrement
dropped after the malfunction. On November 15, 19623 another solar-panel malfunction occurred. However,
cruise science was not commanded off, and temperatures were only slightly affected. Solar-panel front

temperatures dropped 2°F; booster regulator temperature dropped 3°F.

Temperature measurements were not telemetered during the encounter mode, but temperatures
measured before and after encounter were compared to determine the thermal influence of Venus on the space-
craft. Both the battery and the power assembly indicated a 2°F temperature rise when the cruise mode was
resumed. Both of these assemblies faced Venus during encounter, but part of the temperature rise resulted

from increased internal power.

After encounter, spacecraft temperatures continued to rise slowly until December 28, 1962¢ at which
time the spacecraft had reached its closest point of approach to the Sun. Before the slowly decreasing solar
intensity could result in lower temperatures, however, a CC&S casualty on December 30° caused a lowering of
electrical efficiency within the spacecraft. The result was a sharp rise in internal power dissipation, which
caused hex temperatures to rise gradually over the following 3 days. By January 2, 19638 the following
temperature rises had occurred: booster regulator, 9°F; propulsion system nitrogen tank, 8°F; propellant tank,
5°F; battery, 7°F; electronic assembly I, 3°F; electronic assembly II, 3°F; electronic assembly III, 3°F;
electronic assembly IV, 5°F; electronic assembly V, 17°F; upper thermal shield, 2°F. The last data received

before spacecraft failure on January 37 indicated no change in temperatures during the previous 17 hr.

Day 304.
Day 319,
Day 362.
Day 364.
Day 002.
Day 003.

W N

-3 O\ n

10
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Vi.  ANALYSIS OF FLIGHT PERFORMANCE

The Mariner 2 flight was notable for the virtually universal high temperature condition of the space-

craft. Temperatures near Earth exceeded expectations by as much as 40°F; those near encounter were as

much as 75°F high. Indeed, the only monitored temperatures that behaved as expected were those of the

solar panels. Predicted and actual temperatures are given in Table I. The sequence of significant flight

events and plots of temperature and data number as a function of time are included in Appendix A.

There are four general categories into which possible causes for the high temperature condition can

be grouped:

High internal power dissipation. Although erroneous predictions for individual com-
ponents may have been made, it is felt that no great over-all disparity between expected

and actual power dissipation existed.

High solar heat input. The fact that the temperature rise between Earth and Venus was
substantially higher than expected suggests that this effect was at least partially to
blame for the warm condition. Two known contributions of solar input to the spacecraft
were neglected in preflight testing because of the nature of the tests. One effect was

that of reflected solar irradiation. For example, the energy incident on hex faces that

was reflected from intercostals and legs was not provided for by the heater pad approach.

Direct solar inputs were easily simulated by simply applying the appropriate heat to
sunlit areas, but any similar treatment of reflected sunlight was so difficult as to be
prohibitive. Another such effect was the conduction of heat into the hex from sunlit
structural members. This effect, not simulated because of the small energies involved
and the difficulty in implementation, was again “‘in the wrong direction”. Also, the
degradation of white paints and the upper thermal shield because of ultraviolet
irradiation over the course of the flight caused an increase in total spacecraft solar

absorptivity.

Lowered emissivities. Any contamination of polished surfaces by oil, dirt, etc., causes
an increase in emissivity and hence in heat radiating capability. The exact nature and

degree of contamination of spacecraft surfaces in vacuum chambers has proved difficult

11
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to assess, although certainly oil contamination is known to occur from time to time. In

és

any case, it is possible that the ‘‘cleaning’ action of the hard vacuum of space lowers

emissivities to such a degree that higher temperatures result.

Inadequate thermal test mockup. Some of the difficulties encountered in preflight
thermal tests have already been mentioned. An additional source of error was the
localizing (in heater pads) of distributed solar inputs and the possible unbonding of the
heaters from the spacecraft surface. Both of these factors could have caused local
“‘hot-spots’’ that radiated heat away at high temperatures, thereby creating artificially

low temperatures within the spacecraft.

13
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VII.  CONCLUSION

Despite the warmth with which Mariner 2 greeted outer space, the thermal design proved to be
fundamentally sound. The louvers performed well, decreasing the average hex temperature excursion by 12

to 15°F. All temperatures stayed within limits during the critical midcourse maneuver.

Present test techniques, however, have been shown to be inadequate for the requirements of

planetary missions. A large store of flight data, which should prove invaluable in the temperature control of

future generations of spacecraft, has been collected.

14
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Table A-1.  Sequence of significant flight events

APPENDIX
Mariner 2 Flight Data

Estimated Estimated
Day time (GMT) Event Day time (GMT) Event
239 06:53:14 Liftoff 248 00:01:00 Pitch turn sequence begins
06:58:14 Atlas-Agena separation 00:23:00 Motor burn sequence begins
First Agena ignition 00:23:00 Command motor ignition
First Agena burnout 00:23:31 Command motor shutoff
- Second Agena ignition 00:27:00 Sun reacquisition
- Second Agena burnout 00:34 Sun reacquired
07:21:53 Spacecraft-Agena separation 00:34 Gyros turned off
07:37:04 Unfold solar panels and unlatch 00:34 Cruise science turned on
radiometer 02:07:53 Earth reacquisition
07:38:07 Solar panels unfolded 02:34 Earth reacquired
07:53:07 Initial Sun acquisition
07:55:35 Sun acquired 304 05:30 Power failure
07:58:35 Gyros turned off 20:28 Transmitted RTC-10 (cruise science off)
241 16:13:00 Transmitted RTC-8 (cruise science on)
312 01:00 Power system operating normally
246 05:29:14 Initial Earth acquisition 21:26 Transmitted RTC-8 (cruise science on)
05:29:14 Earth sensor power turned on
05:29:14 Gyros turned on
05:29:14 Cruise science turned off 313 12:22 Power failure
05:29:14 Initiate roll search
05:58:58 Earth acquired 343 23:20 Data encoder malfunction
05:58:58 Roll search stops
05:58:58 Gyros turned off 346 20:00 CCA&S tailure
05:58:58 Cruise science turned on
348 Encounter phase sequence
247 22:49:42 Transmitted RTC-6 (initicte midcourse 13:35 Transmitted RTC-7 (encounter telemetry mode)
maneuver sequence)
22:49:42 Accelerometer turned on 20:39 Transmitted RTC-8 (cruise science on)
22:49:42 Gyros turned on
22:49:42 Cruise science turned off
23:49:00 Roll turn sequence begins 364 17:28 CCA&S or power system failure frequency shift
003 07:00 Spacecraft's last received signal

i5
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Fig. A-8. Mariner 2 attitude-control system nitrogen-tank temperature
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Fig. A-9. Mariner 2 4A11 and 4A12 solar-panel front temperatures
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Fig. A-10. Mariner 2 4A11 solar-panel back temperature

20

TEMPERATURE, °F

°F

TEMPERATURE,



JPL Technical Memorandum No. 33-140

TELEMETRY DATA NUMBER

TELEMETRY DATA NUMBER

130
120 A
/ —150
) A
—140
100 /]
/ —130
90 =4
—l1z0
A
80 ,J_//— \-/ Vel —ho
70 rJ_/—’ 100
A —| 90
60 o
— 80
50
230 240 250 260 270 280 290 300 310 320 330 340 350 360 005
DAY OF YEAR 1962, 1963
Fig. A-11. Mariner 2 electronic assembly I temperature (power boost-regulator and science assemblies)
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Fig. A-12. Mariner 2 electronic assembly II temperature (transponder)
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Fig. A-13. Mariner 2 electronic assembly III temperature (data encoder and command)
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Fig. A-14. Mariner 2 electronic assembly IV temperature (CC&S and attitude control)
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Fig. A-15. Mariner 2 electronic assembly V temperature (power and pyrotechnics assemblies)
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Fig. A-16. Mariner 2 lower thermal shield temperature
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Fig. A-17. Mariner 2 upper thermal shield temperature
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Mariner 2 plasma experiment temperature
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Fig. A-19. Mariner 2 antenna yoke temperature
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Fig. A-20. Mariner 2 infrared radiometer housing

25

oF

TEMPERATURE,

°F

TEMPERATURE,



